2019年4月22日月曜日

だまされやすい確率

【3】1組のトランプの絵札(ジャック、クイーン、キング)の合計12枚の中から任意に4枚の札を選ぶとき、ジャック、クイーン、キングの札がそれぞれ少なくとも1枚選ばれる確率を求めよ。
  ・・・という問題に対して、A君、B君、C君は次のように答えた。正しいのは、だれ?

    《A君の答え》
  総数(分母)は 12C4 通り。
  分子は、まずJ,Q,Kの決め方が 43 通り。残り9枚の中から任意の1枚をとる。
  よって、求める確率は 43×9/12C4

    《B君の答え》
  まず3枚とり出して、その中にJ,Q,Kが含まれる確率は 4312C3
  次に、残り9枚の中から任意の1枚をとる。
  よって、求める確率は 4312C3×9/9

    《C君の答え》
  余事象を考える。J,Qだけが出るのは 8C4 通り。
  Q,Kだけが出る場合も、K,Jだけが出る場合も同じ。
  よって、求める確率は 1-8C4×3/12C4



 生徒たちから「A君じゃね?」「いや、C君だ」「全部合ってるように思う」などいろんな声が出たが、実はA君,B君,C君ともみんな間違い。(おぃおぃそれくらい気づけよ!)
 そこで私は「じゃぁ正しい確率出してよ」と振る。生徒たちは再び考え始めて、途中で他の人のと見比べると・・・合わない。みんなが出している数値が何パターンもあって、どれが正解だかわからない。
 ほぅれみろ。確率って出来そうで出来ないだろ。それを実感してもらうためにこの問題をやってるのさ。確率の問題って、解説を聞いたり答えを見たりすれば「ふむふむ」と分かった気になる。でも自分でやろうとすると、合わない。そういうもんなのさ。だからさ、僕が間違った答えを言っても、君らはたぶん信じるよ。僕はね、ここにいる全員をだます自信があるよ。
 そこで、まずは「A君、B君、C君の答え方、どこが間違っているのか指摘して」みよう。そうじゃないと、だまされる。A君、B君、C君がどこで間違ったかというと、結局はモレがあったり、ダブったりということだ。

  • A君は、たとえば「(J1,Q1,K1)+(J2)と(J2,Q1,K1)+(J1)」をダブって数えている。
  • B君は、たとえば「初めに(J,J,Q)を取り出して、最後に(K)を取り出す場合」がモレている。
  • C君は、たとえば「Jだけが出る場合」を2回ダブってカウントして、余計に引いている。

 では、ここで【3】の正しい答えを言おう。A君、B君、C君の答え方を修正してもできるのだろうけれど、僕は次のように数えた。
  2枚出る絵を選ぶ
  (JorQorK) Qから1枚
      ↓   ↓

      4C2×4C1×4C112C432/55
        ↑    ↑ 
 例えばJから2枚とる  Kから1枚
ここで生徒たちは「なるほど」という顔をする。僕はすかさず「ほぅら、まただまされた!」。でも実はこれが正解。でも、そんなことは口が裂けても言わない。

0 件のコメント:

コメントを投稿